

1

Successful Application of Software Reliabili ty Engineering for the NASA Space Shutt le

Ted Keller and Norman F. Schneidewind,
�
Successful Application of Software Reliabilit y

Engineering for the NASA Space Shuttle
�
, Software Reliabilit y Engineering Case Studies,

International Symposium on Software Reliabilit y Engineering, November 3, Albuquerque,
New Mexico, November 4, 1997, pp. 71-82.

Abstract

The Space Shuttle avionics software represents a successful integration of many of the computer

industry's most advanced software engineering practices and approaches. Beginning in the late
1970's this software development and maintenance project has evolved one of the world's most
mature software processes applying the principles of the highest levels of the Carnegie Mellon
University Software Engineering Institute's Capabilit y Maturity Model, Trusted Software
Methodology, and ISO 9001 Standards. This software process, considered to be a "best practice" by
many software industry organizations includes state-of-the-practice software reliabilit y engineering
 methodologies. Life-criti cal Shuttle avionics software produced by this process is recognized to be
among the highest quality and highest reliabilit y software in operation in the world. This case study
explores the successful use of extremely detailed fault and failure history, throughout the software
life cycle, in the application of software reliabilit y engineering techniques to gain insight into the
flight-worthiness of the software and to suggest "where to look" for remaining defects. The role of
software reliabilit y models and failure prediction techniques is examined and explained to allow the
use of these approaches on other software projects. One of the most important aspects of such an
approach, "how to use and interpret the results" of the application of such techniques is addressed .

Keywords: Verification and validation, software reliabilit y measurement and prediction, safety
criti cal software, risk analysis.

Space Shutt le Flight Software Application

The Space Shuttle Primary Avionics Software Subsystem (PASS) represents a successful
integration of many of the computer industry's most advanced software engineering practices and
approaches. Beginning in the late 1970's this software development and maintenance project has
evolved one of the world's most mature software processes applying the principles of the highest
levels of the Software Engineering Institute's Capabilit y Maturity Model and ISO 9001 Standards.
This software process, considered to be a "best practice" by many software industry organizations
includes state-of-the-practice software reliabilit y engineering (SRE) methodologies. Life-criti cal
PASS produced by this process is recognized to be among the highest quality and highest reliabilit y
software in operation in the world. Using this application, we show how SRE can be applied to:
interpret software reliabilit y predictions, support verification and validation of the software, assess
the risk of deploying the software, predict the reliabilit y of the software, develop test strategies to
bring the software into conformance with reliabilit y specifications, and make reliabilit y decisions
regarding deployment of the software.

 Reliabilit y predictions are currently used by Lockheed-Martin Space Information Systems to add
confidence to established positions regarding low failure probabiliti es for the PASS that are based on

2

formal software certification processes. It is the purpose of this case study to share the experience
obtained from the use of SRE on this project, since this application is judged by the Lockheed-
Martin team to be a successful attempt to apply SRE to this software. The SRE techniques and
concepts employed by Lockheed-Martin should be of value for other software systems.

Interpretation of Software Reliabili ty Predictions

Successful use of statistical modeling in predicting the reliabilit y of a software system requires a
thorough understanding of precisely how the resulting predictions are to be interpreted and applied
[9]. The PASS (430 KLOC) is frequently modified, at the request of NASA, to add or change
capabiliti es using a constantly improving process. Each of these successive PASS versions
constitutes an upgrade to the preceding software version. Each new version of the PASS (designated
as an Operational Increment, OI) contains software code which has been carried forward from each
of the previous versions ("previous-version subset") as well as new code generated for that new
version ("new-version subset").We have found that by applying a reliabilit y model independently to
the code subsets according to the following rules, we can obtain satisfactory composite predictions
for the total version:

(1) all new code developed for a particular version does use a nearly constant process.

(2) all code introduced for the first time for a particular version does, as an aggregate, build up the

same "shelf-li fe" and operational execution history

(3) unless subsequently changed for a newer capabilit y, thereby becoming "new code" for a later

version, all new code is only changed thereafter to correct faults.

It is essential to recognize that this approach requires a very accurate code change history so that
every failure can be uniquely attributed to the version in which the defective line(s) of code were
first introduced. In this way it is possible to build a separate failure history for the new code in each
release. To apply SRE to your software system you should consider breaking your systems and
processes down into smaller elements to which a reliabilit y model can be more accurately applied.
Using this approach, we have been successful in applying SRE to predict the reliabilit y of the PASS
for NASA.

Estimating Execution Time

We estimate execution time of segments of the PASS software by analyzing records of test cases
in digital simulations of operational flight scenarios as well as records of actual use in Shuttle
operations. Test case executions are only counted as "operational execution time" for previous-
version subsets of the version being tested if the simulation fidelity very closely matches actual
operational conditions. Pre-release test execution time for the new code actually being tested in a
version is never counted as operational execution time. We use the failure history and operational
execution time history for the new-code subset of each version to generate an individual reliabilit y
prediction for that new code in each version by separate applications of the reliabilit y model. This
approach places every line of code in the total PASS into one of the subsets of "newly" developed

3

code, whether "new" for the original version or any subsequent version. We then represent the total
reliabilit y of the entire software system as that of a composite system of separate components ("new-
code subsets"), each having an individual execution history and reliabilit y, connected in series.
Lockheed-Martin is currently using this approach to apply the Schneidewind [8,9] model as a means
of predicting a "conservative lower bound" for the PASS reliabilit y.

Interpretations and Credibili ty

The two most criti cal factors in establishing credibilit y in software reliabilit y predictions are the
validation method and the way the predictions are interpreted. For example, a "conservative"
prediction can be interpreted as providing an "additional margin of confidence" in the software
reliabilit y, if that predicted reliabilit y already exceeds an established "acceptable level" or
requirement. You may not be able to validate that you can predict the reliabilit y of your software
precisely, but you can demonstrate that with "high confidence" you can predict a lower bound on the
reliabilit y of that software within a specified environment. If you can use historical failure data at a
series of previous dates (and you have the actual data for the failure history following those dates),
you should be able to compare the predictions to the actual reliabilit y and evaluate the performance
of the model(s) used. You should take all these factors into consideration as you establish validation
success criteria. This will also significantly enhance the credibilit y of your predictions among those
who must make decisions based on your results.

Verification and Validation

Software reliabilit y measurement and prediction are useful approaches to verify and validate
software. Measurement refers to collecting and analyzing data about the observed reliabilit y of
software, for example the occurrence of failures during test. Prediction refers to using a model to
forecast future software reliabilit y, for example failure rate during operation. Measurement also
provides the failure data that is used to estimate the parameters of reliabilit y models (i.e., make the
best fit of the model to the observed failure data). Once the parameters have been estimated, the
model is used to predict the future reliabilit y of the software. Verification ensures that the software
product, as it exists in a given project phase, satisfies the conditions imposed in the preceding phase
(e.g., reliabilit y measurements of safety critical software components obtained during test conform to
reliabilit y specifications made during design) [5]. Validation ensures that the software product, as it
exists in a given project phase, which could be the end of the project, satisfies requirements (e.g.,
software reliabilit y predictions obtained during test correspond to the reliabilit y specified in the
requirements) [5].

Another way to interpret verification and validation is that it builds confidence that software is
ready to be released for operational use. The release decision is crucial for systems in which software
failures could endanger the safety of the mission and crew (i.e., safety criti cal software). To assist in
making an informed decision, we integrate software risk analysis and reliabilit y prediction, and we
are evaluating stopping rules for testing. This approach is applicable to all safety criti cal software.
Improvements in the reliabilit y of software, where the reliabilit y measurements and predictions are
directly related to mission and safety, contribute to system safety.
Reliabili ty Measurements and Predictions

4

There are a number of measurements and predictions that can be made of reliabilit y to verify and

validate the software. Among these are remaining failures, maximum failures, total test time required
to attain a given fraction of remaining failures, and time to next failure. These have been shown to be
useful measurements and predictions for: 1) providing confidence that the software has achieved
reliabilit y goals; 2) rationalizing how long to test a software component (e.g., testing suff iciently
long to verify that the measured reliabilit y conforms to design specifications); and 3) analyzing the
risk of not achieving remaining failure and time to next failure goals [6]. Having predictions of the
extent to which the software is not fault free (remaining failures) and whether a failure it is li kely to
occur during a mission (time to next failure) provide criteria for assessing the risk of deploying the
software. Furthermore, fraction of remaining failures can be used as both an operational quality goal
in predicting total test time requirements and, conversely, as an indicator of operational quality as a
function of total test time expended [6].

The various software reliabilit y measurements and predictions can be divided into the following
two categories to use in combination to assist in assuring the desired level of reliabilit y of the
software in safety criti cal systems li ke the PASS. The two categories are: 1) measurements and
predictions that are associated with residual software faults and failures, and 2) measurements and
predictions that are associated with the abilit y of the software to complete a mission without
experiencing a failure of a specified severity. In the first category are: remaining failures, maximum
failures, fraction of remaining failures, and total test time required to attain a given number or
fraction of remaining failures. In the second category are: time to next failure and total test time
required to attain a given time to next failure. In addition, there is the risk associated with not
attaining the required remaining failures and time to next failure. Lastly, there is operational quality
that is derived from fraction of remaining failures. With this type of information a software manager
can determine whether more testing is warranted or whether the software is suff iciently tested to
allow its release or unrestricted use. These predictions provide a quantitative basis for achieving
reliabilit y goals [2].

Risk Assessment

 Safety Risk pertains to executing the software of a safety criti cal system where there is the
chance of injury (e.g., astronaut injury or fatality), damage (e.g., destruction of the Shuttle), or loss
(e.g., loss of the mission) if a serious software failure occurs during a mission. In the case of the
Shuttle PASS, where the occurrence of even trivial failures is extremely rare, the fraction of those
failures that pose any safety or mission success impact is too small to be statistically significant. As a
result, for this approach to be feasible, all failures (of any severity) over the entire 20-year li fe of the
project have been included in the failure history database for this analysis. Therefore, the risk
criterion metrics to be discussed for the Shuttle quantify the degree of risk associated with the
occurrence of any software failure, no matter how insignificant it may be. The approach used can be
applied to Safety Risk where suff icient data exist.

We are experimenting with an algorithm, which uses of the Schneidewind Software Reliabilit y

Model to compute a parameter: fraction of remaining failures as a function of the archived failure
history during test and operation [6]. The prediction methodology uses this parameter and other
reliabilit y quantities to provide bounds on total test time, remaining failures, operational quality, and
time to next failure that are necessary to meet arbitrarily defined Shuttle software reliabilit y levels.
The total test time versus fraction of remaining failures curve shows a pronounced asymptotic
characteristic that indicates the possibilit y of big gains in reliabilit y as testing continues; eventually
the gains become marginal as testing continues.

 Two criteria for software reliabilit y levels will be defined. Then these criteria will be applied to
the risk analysis of safety criti cal software, using the PASS as an example. In the case of the Shuttle
example, the "risk" will represent the degree to which the occurrence of failures does not meet
required reliabilit y levels, regardless of how insignificant the failures may be. Next, a variety of
prediction equations that are used in reliabilit y prediction and risk analysis will be defined and
derived; included is the relationship between time to next failure and reduction in remaining failures.
Then it is shown how the prediction equations can be used to integrate testing with reliabilit y and
quality. An example is shown of how the risk analysis and reliabilit y predictions can be used to make
decisions about whether the software is ready to deploy; this approach could be used to determine
whether a software system is safe to deploy.

 Criteria for Reliabili ty

If the reliabilit y goal is the reduction of failures of a specified severity to an acceptable level of
risk [7], then for software to be ready to deploy, after having been tested for total time tt, it must
satisfy the following criteria:

1) predicted remaining failures r(tt)<rc, (1)
where rc is a specified criti cal value , and

2) predicted time to next failure TF(tt)>tm, (2)
where tm is mission duration. The total time tt could represent a Safe/Unsafe criterion, or the time to
remove all faults regardless of severity (as used in the Shuttle example).

For systems that are tested and operated continuously li ke the Shuttle, tt, TF(tt), and tm are
measured in execution time. Note that, as with any methodology for assuring software reliabilit y,
there is no guarantee that the expected level will be achieved. Rather, with these criteria, the
objective is to reduce the risk of deploying the software to a "desired" level.

Remaining Failures Cr iterion

Using the assumption that the faults that cause failures are removed (this is the case for the
Shuttle), criterion 1 specifies that the residual failures and faults must be reduced to a level where the
risk of operating the software is acceptable. As a practical matter, rc=1 is suggested. That is, the goal
is to reduce the expected remaining failures of a specified severity to less than one before deploying
the software. The assumption for this choice is that one or more remaining failures would constitute
an undesirable risk of failures of the specified severity. Thus, one way to specify rc is by failure
severity level (e.g., include) only li fe threatening failures). Another way, which imposes a more
demanding criterion, is to specify that rc represents all severity level, as in the Shuttle example. For
example, r(tt)<1 would mean that r(tt) must be less than one failure, independent of severity level.

If r(tt)
� rc is predicted, testing would continue for a total time tt'>tt that is predicted to achieve

r(tt')<rc, using the assumption that more failures will be experienced and more faults will be corrected
so that the remaining failures will be reduced by the quantity r(tt)-r(tt'). If the developer does not
have the resources to satisfy the criterion or is unable to satisfy the criterion through additional
testing, the risk of deploying the software prematurely should be assessed (see the next section). It is
known that it is impossible to demonstrate the absence of faults [3]; however the risk of failures
occurring can be reduced to an acceptable level, as represented by rc. This scenario is shown in
Figure 1. In case A r(tt)<rc is predicted and the mission begins at tt. In case B r(tt)

� rc is predicted and
the mission could be postponed until the software is tested for total time tt' when r(tt')<rc is predicted.
In both cases criterion 2) might also be required for the mission to begin.

Time to Next Failure Cr iter ion

Criterion 2 specifies that the software must survive for a time greater than the duration of the
mission. If TF(tt) � tm, is predicted, the software is tested for a total time tt''>tt that is predicted to
achieve TF(tt")>tm, using the assumption that more failures will be experienced and faults corrected
so that the time to next failure will be increased by the quantity TF(tt")-TF(tt). Again, if it is infeasible
for the developer to satisfy the criterion for lack of resources or failure to achieve test objectives, the
risk of deploying the software prematurely should be assessed (see the next section). This scenario is
shown in Figure 2. In case A TF(tt)>tm is predicted and the mission begins at tt. In case B TF(tt) � tm is
predicted and in this case the mission could be postponed until the software is tested for total time tt''
when TF(tt")>tm is predicted. In both cases criterion 1) might also be required for the mission to
begin. If neither criterion is satisfied, the software is tested for a time which is the greater of tt' or tt''.

Total Test Time

The amount of total test time tt can be considered a measure of the degree to which software
reliabilit y goals have been achieved. This is particularly the case for systems like the Shuttle where
the software is subjected to continuous and rigorous testing for several years in multiple faciliti es,
using a variety of operational and training scenarios (e.g., by Lockheed-Martin in Houston, by NASA
in Houston for astronaut training, and by NASA at Cape Canaveral). We can view tt as an input to a
risk reduction process, and r(tt) and TF(tt) as the outputs, with rc and tm as "risk criteria levels" of
reliabilit y that control the process. While it must be recognized that total test time is not the only

consideration in developing test strategies and that there are other important factors, li ke the
consequences for reliabilit y and cost, in selecting test cases [11] nevertheless, for the foregoing
reasons, total test time has been found to be strongly positively correlated with reliabilit y growth for
the Shuttle [9].

Remaining Failures

The mean value of the risk criterion metric (RCM) for criterion 1 is formulated as follows:
RCM r(tt)= (r(tt)-rc)/rc=(r(tt)/rc)-1 (3)

Equation (3) is plotted in Figure 3 as a function of tt for rc=1, where positive, zero, and negative
values correspond to r(tt)>rc, r(tt)=rc, and r(tt)<rc, respectively. In Figure 3, these values correspond to
the following regions: CRITICAL (i.e., above the X-axis predicted remaining failures are greater
than the specified value); NEUTRAL (i.e., on the X-axis predicted remaining failures are equal to the
specified value); and DESIRED (i.e., below the X-axis predicted remaining failures are less than the
specified value, which could represent a "safe" threshold or in the Shuttle example, an "error-free"
condition boundary). This graph is for the Shuttle Operational Increment OID (with many years of
shelf li fe) : a software system comprised of modules and configured from a series of builds to meet
Shuttle mission functional requirements. In this example it can be seen that at approximately tt=57
the risk transitions from the CRITICAL region to the DESIRED region.

Time to Next Failure

Similarly the mean value of the risk criterion metric (RCM) for criterion 2 is formulated as
follows:
RCM TF(tt)=(tm-TF(tt))/tm=1-(TF(tt))/tm (4)

Equation (4) is plotted in Figure 4 as a function of tt for tm=8 days (a typical mission duration time
for this OI), where positive, zero, and negative risk corresponds to TF(tt)<tm, TF(tt)=tm, and TF(tt)>tm,
respectively. In Figure 4, these values correspond to the following regions: CRITICAL (i.e., above
the X-axis predicted time to next failure is less than the specified value); NEUTRAL (i.e., on the X-
axis predicted time to next failure is equal to the specified value); and DESIRED (i.e., below the X-
axis predicted time to next failure is greater than the specified value). This graph is for the Shuttle
operational increment OIC. In this example the RCM is in the DESIRED region at all values of tt.

Approach to Prediction

In order to support the reliabilit y goal and to assess the risk of deploying the software, various

reliabilit y and quality predictions are made during the test phase to validate that the software meets
requirements. For example, suppose the software reliabilit y requirements state the following: 1)
ideally, after testing the software for total test time tt, the predicted remaining failures shall be less
than one; 2) if the ideal of 1) cannot be achieved due to cost and schedule constraints, time to next
failure, predicted after testing for total test time tt, shall exceed the mission duration; and 3) the risk
of not meeting 1) and 2) shall be assessed. Thus, this approach uses a software reliabilit y model to
predict the following: 1) maximum failures, remaining failures, and operational quality (as defined

in the next section); 2) time to next failure (beyond the last observed failure); 3) total test time
necessary to achieve required levels of remaining failures (fault) level, operational quality, and time
to next failure; and 4) tradeoffs between increases in levels of reliabilit y and quality with increases in
testing (i.e., cost of testing).

An important concept to note is that reliabilit y will be measured during test; that is, failure data
will be collected for two purposes: 1) to verify that the observed data conform to the reliabilit y
specified during design and 2) to provide data for reliabilit y parameter estimation. With regard to 1),
the observed time to next failure can be compared to the specified quantity. However, in contrast,
observed remaining failures and maximum failures have no meaning because we don't know how
many remaining failures (faults) there are at a given time during the li fe of the software and we don't
know the maximum failures that will have occurred at the end of the li fe of the software. Thus
remaining failures and maximum failures only have meaning as predicted quantities. However, we
can make approximations to these quantities for model validation purposes (see the Summary of
Predictions section).

Prediction Equations

In order to consider the risk of deploying the PASS, various predictions have been made based on

the Schneidewind Software Reliabilit y Model [1, 8, 9, 10], one of the four models recommended in
the ANSI/AIAA Recommended Practice for Software Reliabilit y [1]. The equations are derived in the
next section. They have been applied to analyze the reliabilit y of the PASS based on the approach
recommended herein. The Statistical Modeling and Estimation of Reliabilit y Functions for Software
(SMERFS) [4] is used for all predictions except tt, which is not implemented in SMERFS.

Because the PASS is run continuously, around the clock, in simulation, test, or flight, "time"
refers to continuous execution time and total test time refers to execution time that is used for testing.
 Failure count intervals are equal length periods of continuous execution time.
 � � � � � 	
 � �
 � � � � � � � �
 � � � � � � � � � � ! � " � # # � # " $ � � # � � % � � � &

' � � (� � �) * + , - . / . 0 1 , * 2 . 3 4 , - . 5 . 6 * 2 1 , * 2 . 3 4 4 1 * 7 8 6 . 6 1 , . 5 * 2 * 5 . 5 9 : 4 1 * 7 8 6 . 6 1 , . ; * < . < = 6 . 7 1 , * 2 . 4 1 * 7 8 6 .
rate); t is the last interval of observed failure data; s is the starting interval for using observed failure 5 1 , 1 * / > 1 6 1 ? . , . 6 . + , * ? 1 , * 3 / , - 1 , > 6 3 2 * 5 . + , - . 9 . + , . + , * ? 1 , . + 3 4 @ 1 / 5 A B C D E F G H I J E B K K L M B E G
predictions [8]; Xs-1 is the observed failure count in the range [1,s-1]; Xs,t is the observed failure
count in the range [s,t]; and Xt=Xs-1+Xs,t. Failures are counted against operational increments (OIs).
Data from four Shuttle OI's, designated OIA, OIB, OIC, and OID are used in this analysis example.

 Cumulative Failures

When estimates are
I N E B O C G D P I M E F G Q B M B H G E G M J R B C D S T U O E F J B J E F G J E B M E O C V O C E G M W B X P I M L J O C V

observed failure data, the predicted failure count in the range [s,t] is obtained:
Fs,tY Z [\] ^ _ ` -exp(- a b b c -s+1)))] (5)

Furthermore, if Xs-1, the observed failure count in the range [1,s-1], is added to equation (5), the
predicted failure count in the range [1, t] is obtained:

d e f g h e i j k g l m
-exp(-

k e e f
-s+1)))]+Xs-1 (6)

Failures in an Interval Range

Let t n t2 and subtract Xt1=Xs-1+Xs,t1, the observed failure count in the range [1,t1], from equation
(6), then obtain the predicted failure count in the range [t1,t2]:
F(t1,t2o p q r s t o u v -exp(- t q q w 2-s+1)))]-Xs,t1 (7)

 Maximum Failures

Let t x y in equation (6) and obtain the predicted failure count in the range [1,y] (i.e., maximum
failures over the li fe of the software):
F(y z { | } ~ � � s-1 (8)

Remaining Failures

To obtain predicted remaining failures r(t) at time t, subtract Xt=Xs-1+Xs,t from equation (8):
 � � � � � � � � � � -Xs,t=F(�)-Xt (9)

r(t) can also be expressed as a function of total test time tt by substituting equation (5) for Xs,t in

equation (9) and letting t � tt:
r(tt

� � � � � � � � � � � - � � � t-(s-1)]) (10)

Fraction of Remaining Failures

If equation (9) is divided by equation (8), fraction of remaining failures, predicted at time t is
obtained:
p(t)=r(t)/F(�) (11)

Operational Quali ty

The operational quality of software is the complement of p(t). It is the degree to which software
is free of remaining faults (failures), using the assumption that the faults that cause failures are
removed. It is predicted at time t as follows:
Q(t)=1-p(t) (12)

Total Test Time to Achieve Specified Remaining Failures

The predicted total test time required to achieve a specified number of remaining failures at tt,

r(tt), is obtained from equation (10) by solving for tt:

= [log[/([r()])]] / + (s1)t tt tα β β (13)

Time to Next Failure

By substituting t2=t+TF(t) in equation (7), letting t1 � t, defining Ft=F(t,t+TF),and solving for TF(t),

the predicted time for the next Ft failures to occur, when the current time is t, is obtained :
The terms in TF(t) have the following definitions:

t: Current interval;
Xs,t: Observed failure count in the range [s,t]; and
Ft: Given number of failures to occur after interval t.

Equations (5)-(11) and (14) are predictors of reliabilit y that can be related to safety or, as in the
Shuttle example, the error-free condition of the software; equation (13) represents the predicted total
test time required to achieve stated reliabilit y goals. If a quality requirement is stated in terms of
fraction of remaining failures, the definition of Q as Operational Quality, equation (12), is the
degree to which the software meets specified requirements [7]. For example, if a reliabilit y
specification requires that software is to have no more that 5% remaining failures (i.e., p=.05,
Q=.95) after testing for a total of tt intervals, then a predicted Q of .90 would indicate the degree to
which the software meets the requirement.

Relating Testing to Reliabili ty and Quali ty

Predicting Total Test Time and Remaining Failures

The tradeoff between testing and reliabilit y can be analyzed by first using equation (8) to predict
maximum failures (F(�)=11.76 for Shuttle OIA). Then, using given values of p and equation (11) and
letting t � tt, r(tt) is predicted for each value of p. The values of r(tt) are the predictions of remaining
failures after the OI has been executed for total test time tt. Next the values of r(tt) and equation (13)
are used to predict corresponding values of tt. The results are shown in Figure 5, where r(tt) and tt are
plotted against p for OIA. Note that required total test time tt rises very rapidly at small values of p
and r(tt). Also note that the maximum value of p on the plot corresponds to tt=18 and that smaller
values correspond to future values of tt (i.e., tt>18).

Predicting Operational Quali ty

Similarly, the tradeoff between testing and quality can be analyzed by using equation (12), which
is a useful measure of the operational quality of software because it measures the degree to which
faults have been removed from the software (using the assumption that the faults that cause failures
are removed), relative to predicted maximum failures. This type of quality is called operational (i.e.,
based on executing the software) to distinguish it from static quality (e.g., based on the complexity of
the software). Using given values of p and equations (11) and (12) and letting t � tt, r(tt) and Q are

(t) = [(log[/((+)]) /](ts+1)T X FF s,t t

for (/) > (+)X Fs,t t

α αβ β

α β
 (14)

computed, respectively. The values of r(tt) are then used in equation (13) to compute tt. Like equation
(12), equation (13) has the asymptotic property of a great amount of testing required to achieve high
levels of quality.

Making Reliabili ty Decisions

In making the decision about how long to test, tt, the reliabilit y criteria and risk assessment

approach can be applied. Table 1 is used to ill ustrate the process. For tt=18 (when the last failure
occurred on OIA), rc=1, and tm=8 days (.267 intervals), remaining failures, RCM for remaining
failures, time to next failure, RCM for time to next failure, and operational quality are shown. These
results indicate that criterion 2 is satisfied but not criterion 1 (i.e., CRITICAL with respect to
remaining failures); also operational quality is low.

By looking at Table 1, it can be seen that if remaining failures r(18) are reduced by 1 from 4.76
to 3.76 (non-integer values are possible because the predictions are mean values), the predicted time
to next failure that would be achieved is TF(18)=3.87 intervals. These predictions satisfy criterion 2
(i.e., TF(18)=3.87>tm=.267) but not criterion 1 (i.e., r(18)=4.76>rc=1). Note also in Table 1 that
fraction of remaining failures p=1-Q=.40 at r(18)=4.76. Now, if testing is continued for a total time
tt=52 intervals, as shown in Table 1, and remaining failures are reduced from 4.76 to .60, the
predicted time to next 4.16 failures that would be achieved is 33.94 (34, rounded) intervals. This
corresponds to tt=18+34=52 intervals. That is, if testing is continued for an additional 34 intervals,
starting at interval 18, another 4.16 failures would be expected. These predictions now satisfy
criterion 1 because r(52)=.60<rc=1. Note also in Table 1 that fraction of remaining failures p=1-
Q=.05 at r(52)=.60. Using the converse of the relationship, provides another perspective, where, if
testing is continued for an additional TF=34 intervals, starting at interval 18, the predicted reduction
in remaining failures that would be achieved is 4.16 or r (52)=. 60.

Lastly, Figure 6 shows the Deployment Decision, relevant to the Shuttle (which could be the

Launch Decision relative to the Shuttle), where remaining failures are plotted against total test time
for OIA. With these results in hand, the software manager can decide whether to deploy the software
based on factors such as predicted remaining failures, as shown in Figure 6, along with considering
other factors such as the trend in reported faults over time, inspection results, etc.. If testing were to
continue until t t=52, the predictions in Figure 6 and Table 1 would be obtained. These results show
that criterion 1 is now satisfied (i.e., DESIRED) and operational quality is high. Figure 6 also shows
that at tt=52, further increases would not result in a significant increase in reliabilit y. Also note that
at tt=52 it is not feasible to make a prediction of TF(52) because the predicted remaining failures is
less than one.

Table 1. Reliabili ty Cr iteria Assessment of OIA

r c=1

tm=8
days

tt

 �

 �

s*

r (tt)

RCM
r(tt)

s*

TF(tt)

RCM
TF(tt)

Q

18

.534

.061

9

4.76

3.76

9

3.87

-13.49

.60

52

.534

.061

9

.60

-.40

9

*

*

.95

* Cannot predict because predicted Remaining Failures is less than one.

Summary of Predictions

Table 2 shows a summary of remaining and maximum failure predictions compared with actual
failure data, where available, for OIA, OIB, OIC, and OID. The purpose of this analysis is to validate
the model for Shuttle applications. Because actual remaining and maximum failures are unknown,
the assumption is used: that remaining failures are "zero" for those OI's (B, C, and D) that were
executed for extremely long times (years) with no additional failure reports; correspondingly, for
these OI's, the assumption is used: that maximum failures equals total observed failures.

Table 2. Predicted Remaining and Maximum Failures versus Actuals

tt

s*

 �

 �

r (tt)

Actual r

F(��)

Actual F

OIA

18

9

.534

.061

4.76

?A

11.76

7A

OIB

20

1

1.69

.131

0.95

1B

12.95

13B

OIC

20

7

1.37

.126

1.87

2C

12.87

13C

OID

18

6

.738

.051

7.36

4D

17.36

14D

Time of last recorded failure:
A. No additional failures have been reported after 17.17 intervals for OIA.
B. The last recorded failure occurred at 63.67 intervals for OIB.
C. The last recorded failure occurred at 43.80 intervals for OIC.
D. The last recorded failure occurred at 65.03 intervals for OID.

Table 3 shows a summary of total test time and time to next failure predictions compared with
actual execution time data, where available, for OIA, OIB, OIC, and OID.

Table 3. Predicted Total Test Time and Time to Next Failure versus Actuals

s*

tt(r=1)

Actual tt

t

s*

TF(t)

Actual TF

OIA

9

43.59

?

18

9

3.9

?

OIB

1

*

63.67

20

0

*

43.67

OIC

7

24.98

27.07

20

5

4.2

7.63

OID

6

56.84

58.27

18

5

6.4

6.20

* Cannot predict because predicted Remaining Failures is less than one.
Additional Predictions for OID:
The following are additional predictions of total test time for OID that are not listed
in Table 3: tt(r=2)=43.35, Actual=45.17; tt(r=3)=35.47, Actual=23.70.

Lessons Learned

Several important lessons have been learned from our experience of twenty years in developing
and maintaining the PASS, which you could consider for adoption in your SRE process:

1) No one SRE process method is the "silver bullet" for achieving high reliabilit y. Various methods,
including formal inspections, failure modes analysis, verification and validation, testing, statistical
process management, risk analysis, and reliabilit y modeling and prediction must be integrated and
applied.

2) The process must be continually improved and upgraded. For example, recent experiments with
software metrics have demonstrated the potential of using metrics as early indicators of future
reliabilit y problems. This approach, combined with inspections, allows many reliabilit y problems to
be identified and resolved prior to testing.

3) The process must have feedback loops so that information about reliabilit y problems discovered
during inspection and testing is fed back not only to requirements analysis and design for the purpose
of improving the reliabilit y of future products but also to the requirements analysis, design,
inspection and testing processes themselves. In other words the feedback is designed to improve not
only the product but also the processes that produce the product.

4) Given the current state-of-the-practice in software reliabilit y modeling and prediction,
practitioners should not view reliabilit y models as having the abilit y to make highly accurate
predictions of future software reliabilit y. Rather, software managers should interpret these

predictions in two significant ways: a) providing increased confidence, when used as part of an
integrated SRE process, that the software is safe to deploy; and 2) providing bounds on the reliabilit y
of the deployed software (e.g., high confidence that in operation the time to next failure will exceed
the predicted value and the predicted value will safely exceed the mission duration).

References

[1] Recommended Practice for Software Reliabilit y, R-013-1992, American National Standards

Institute/American Institute of Aeronautics and Astronautics, 370 L'Enfant Promenade, SW,
Washington, DC 20024, 1993.

[2] C. Billi ngs, et al, "Journey to a Mature Software Process", IBM Systems Journal, Vol. 33, No. 1, 1994,

pp. 46-61.

[3] E. W. Dijkstra, "Structured Programming", Software Engineering Techniques, eds. J. N. Buxton and B.

Randell , NATO Scientific Affairs Division, Brussels 39, Belgium, April 1970 pp. 84-88.

[4] Willi am H. Farr and Oliver D. Smith, Statistical Modeling and Estimation of Reliabili ty Functions for

Software (SMERFS) Users Guide, NAVSWC TR-84-373, Revision 3, Naval Surface Weapons Center,
Revised September 1993.

[5] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12.1990, The Institute

of Electrical and Electronics Engineers, New York, New York, March 30, 1990.

[6] Ted Keller, Norman F. Schneidewind, and Patti A. Thornton "Predictions for Increasing Confidence in

the Reliabilit y of the Space Shuttle Flight Software", Proceedings of the AIAA Computing in
Aerospace 10, San Antonio, TX, March 28, 1995, pp. 1-8.

[7] Norman F. Schneidewind, "Reliabilit y Modeling for Safety Critical Software", IEEE Transactions on

Reliabilit y, Vol. 46, No.1, March 1997, pp.88-98.

[8] Norman F. Schneidewind, "Software Reliabilit y Model with Optimal Selection of Failure Data", IEEE

Transactions on Software Engineering, Vol. 19, No. 11, November 1993, pp. 1095-1104.

[9] Norman F. Schneidewind and T. W. Keller, "Application of Reliabilit y Models to the Space Shuttle",

IEEE Software, Vol. 9, No. 4, July 1992 pp. 28-33.

[10] Norman F. Schneidewind, "Analysis of Error Processes in Computer Software", Proceedings of the

International Conference on Reliable Software, IEEE Computer Society, 21-23 April 1975, pp.
337-346.

[11] Elaine J. Weyuker, "Using the Consequences of Failures for Testing and Reliabilit y Assessment",
 Proceedings of the Third ACM SIGSOFT Symposium on the Foundations of Software
 Engineering, Washington, D.C., October 10-13, 1995, pp. 81-91.

Star t Test End Test, Begin Mission End Mission

t t
r (t t)<rc

Star t Test Continue Test Begin M ission End M ission

B.

A.

End Test

t t t t'

r (t t) �� r c r (t t)<r c

Figure 1. Remaining Failures Cr iter ion Scenar io

Star t Test End Test, Begin M ission End M ission

t t

Star t Test Continue Test Begin M ission End M ission

B.

A.

End Test

t t tt
’ ’

Figure 2. Time to Next Failur e Cr iterion Scenario

tm

T F(t t)

T F(t t) TF(t t ’ ’)
tm

18 33.5 49 64.5 80

Total Test T ime (30 Day Intervals)

-0.7

1.3

3.3

5.3

7.3

CRITICAL

r(tt)<rc

r(tt)>rc r(tt)=rc

Figure 3. RCM for Remaining Failures, (rc=1), OID

DESI RED

20 24 28 32 36 40 44

Total Test Time (30 Day Intervals)

-73

-53

-33

-13

7 CRITICAL TF(t t)<tm

DESIRED TF(t t)>tm

tm=8 days

TF(t t)=tm

Figure 4. RCM for Ti me to Next Fail ur e (tmm=8 days), O IC

0 0.1 0.2 0.3 0.4 0.5

F r acti on R em a in in g F ai l u r es (p)

0

40

80

120

160

F ig u r e 5 . T o t a l T est T i m e a n d R em a i n i n g F a i l u r e s

v s. F r a ct i o n R e m a i n i n g F a i l u r e s, O I A

0

1

2

3

4

5

 r(tt)

tt

0 120 160

Total Test Time (30 Day Intervals)

0

1

2

3

4

5

/ (r = .6 , t t= 5 2)

E x a m p l e :

t t=Total Test Time Until L aunch

40 8040

r=Remaining Failures

Figure 8. Launch Decision: Remaining
Failures vs. Total Test Time, OIA

